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Effective Hamiltonians for strings and their spatial 
symmetry 

Michael Lowet 
Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland 

Received 22 October 1981 

Abstract. The effective Hamiltonian governing the fluctuations of a ( d  - n)-dimensional 
string into the remaining n dimensions in a d bulk dimensional system is derived using 
semiclassical methods in the long-distance limit and found to represent the hypersurface 
area of the string. We further derive the effective Hamiltonian for strings with an associated 
O(2) Goldstone mode, and obtain a field theory defined on a curved surface given by the 
interface’s position. The role of spatial symmetries in determining the form of the effective 
Hamiltonian is illustrated. 

1. Introduction 

Recently the interface between two phases in an Ising-like system has been much 
studied. In the context of field theoretic Landau-Ginsberg models, fluctuation correc- 
tions to the ‘kink’ (&a tanh Ax) mean-field theory interface profile have been studied 
by various authors (Rudnick and Jasnow 1978a, b, Ohta and Kawasaki 1977, see also 
Wallace and Zia 1979) to give results in reasonable agreement with experimental 
measurements on liquid gas systems (Huang and Webb 1968, Wu and Webb 1973). 

Wallace and Zia (1979) have in addition used the ‘surface tension’ model for the 
interface in an Ising-like system (in which a ( d  - 1)-dimensional interface fluctuates 
into the remaining dimension in a d bulk dimensional system with an energy propor- 
tional to its hypersurface ‘area’) in order to gain insight into the critical properties of 
the bulk system close to its lower critical dimension. This work was extended (Lowe 
and Wallace 1980) to consider the generalisation to the (d - n)-dimensional ‘interface’ 
or ‘string’ fluctuating into the remaining n dimensions in d bulk dimensions with a 
Hamiltonian, as before, proportional to the hypersurface area of the ‘string’. It is 
hoped that insight is gained into the critical properties of systems possessing such 
strings. 

In the context of a field theory these generalised surface tension models correspond 
to the effective (in the long-distance limit) Hamiltonian governing the interactions of 
the n Goldstone (gapless) modes which arise due to the spontaneous breaking of the 
spatial (Euclidean) symmetries by a solution of the Euler-Lagrange mean-field theory 
equations which depends on only n of the d coordinates of the system. Each one of 
the n Goldstone modes corresponds to a translation of the solution, and can be thought 
of as characterising the ‘string’ position. This is closely analogous to the O ( N )  nonlinear 
sigma model which arises when an O ( N )  symmetry is spontaneously broken. 
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We shall review the derivation of the effective Hamiltonian governing the n = 
1, 2 . . . string by semiclassical methods (Gervais eta1 1976, Gervais and Sakita 1975). 
This will emerge in the long-distance limit which is equivalent to the ‘zero-width’ 
limit considered by other authors (Nielson and Oleson 1973, Forster 1974, Gervais 
and Sakita 1975). The derivation of the nonlinearly realised spatial symmetries and 
their role in determining the form of the effective Hamiltonian is considered. 

We next consider the possibility of an extra O(2) Goldstone mode associated with 
a solution of the Euler-Lagrange equations in addition to the translation modes. The 
effective Hamiltonian, which emerges in the long-distance limit, is one which represents 
the nonlinear sigma model for the O(2)  Goldstone mode on the curved surface given 
by the interface’s position. The nonlinearly realised spatial symmetries are again 
considered. 

The spatial symmetries of string-like objects (solitons) have also been studied in 
a related quantum system by Matsumoto et a1 (1981). 

2. System with translation Goldstone modes only 

In this section we shall consider interfaces or strings, specifically the interface in the 
C$4 theory (Skryme 1962) and the vortices in the Abelian Higgs model (Abrikosov 
1957, Marciano and Pagels 1978). In both these cases we have a localised solution 
of the Euler-Lagrange equations which have topological stability (a non-trivial winding 
number), and a finite energy density per unit hypersurface area. In the q54 model 

H = d d X [ ~ ( V C $ ( X ) ) 2 + ~ A ( C $ 2 ( X ) - m 2 / A ) 2 ]  (2.1) 

the relevant solution is 

which defines a ( d  - 1)-dimensional surface which constitutes an interface between 
two regions of different phase. In the Abelian Higgs model (the Euclideanised version), 
where 

H = ddx[+~F,,,F,, + tlD,q512+ :A ( I q 5 l 2  - m 2 / A  1’3 (2.3) I 
and 

FWy = a,A, - aA, D,C#J = (a, - ieA, (2.4) 

and C$ is a complex scalar field, the relevant solution has the following form 

c$(x) = C#Jc(r) e’” r = J x :  +xZ,  w =tan- ’  x ~ x 1  

which represents a ( d  - 2)-dimensional ‘string’ in a d bulk dimensional system. The 
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problem is to find a modified configuration which represents the ‘string’ or ‘interface’ 
fluctuating with a position relative to a flat reference hyperplane given by 

where y is the d - n coordinates on the reference hyperplane and a = 1,2,  . . . , n. 
The modified configuration must be a solution of the Euler-Lagrange equations to 
within errors which are ignorable in the long-distance limit (i.e. irrelevant in the 
renormalisation group sense). 

The modifications to the solutions of the kind (2.2), (2.5) are as follows 

and for any vector with only its first n components non-zero 

where 

(2.9) 

and the inverse square root is taken of the matrix as a whole. Essentially this represents 
rotated versions of the original solutions (exactly if the f are linear in the y )  (see 
Wallace 1980). 

If we now insert this configuration into the original Hamiltonian and perform the 
xa integrations we shall obtain the following effective Hamiltonian 

Hen a dd-”x Jde t  gii I 
where gii is the metric of the surface (2.6) and has the following form 

(2.10) 

(2.1 1)  

In the n = 1 (44) case Hen reduces to the drumhead model derived by Diehl et a1 
(1980). In analogy with the nonlinear sigma model the symmetries which are broken 
by the original solutions (2.2), (2.5) are nonlinearly realised on the fields f a ( y )  (see 
Wallace 1980). 

In particular (small) rotations which mix one of the n axes perpendicular to the 
reference hyperplane with one of the d - n axes in the reference hyperplane i.e. 

xa * xa +naSiyi yi + yi -naxaSi (2.12) 

where nor Si are n, (d - n)-dimensional vectors and S is small, can be shown to be 
realised to within acceptable (i.e. irrelevant) errors and, in the vortex case, to within 
a gauge transformation by the following change in the f fields 

(2.13) 
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on substitution into Hen it can be straightforwardly shown that, up to surface terms, 
Heff is unchanged. 

3. Systems with additional Goldstone modes 

It is possible for strings to possess other types of Goldstone modes than those which 
arise from the breaking of the spatial symmetry. Two examples will be studied in 
detail-an n = 1 and n = 2 string with an associated O(2)  Goldstone mode. As before 
the formalism will suggest the generalisation to general n. 

The n = 1 case occurs in the following theory, studied by various authors 
(Lajzerowicz and Neiz 1979, Lawrie and Lowe 1981) 

H = dd~[$(VS1)2 +iIVS212 + $hlS2I2 +:A ( S :  + IS2I2 - r / h ) 2 ]  (3.1) 

where SI is real and S2 is complex. For r < 2 h  the stable interface with suitable 
boundary conditions on SI is the simple ‘kink’ in SI analogous to (2.11, with S2 

everywhere zero. For r > 2 h  the stable interface has the form 

I 

SI = Jr/2 tanh(Jhx) S2 = (Jr - 2 h / A )  sech(Jhx) eiu ( 3 . 2 )  

where CY is an arbitrary phase. Clearly this configuration breaks the O(2) symmetry 
in addition to the translation invariance of the system. 

An n = 2 string with an associated O(2) Goldstone mode occurs for the following 
modified Abelian Higgs model 

where CY is an additional complex scalar field. For sufficiently small h and large p 
one obtains a stable string solution of the following form 

4 (x )  = &r) elw A(x)  = Ac(r)6 a ( x )  = r c ( r )  ela ( 3 . 4 )  

where all the symbols are as in (2.5) but the functional form of A,, 4, will be different. 
As before we wish to obtain the modified configurations in order to evaluate the 

effective Hamiltonians. The rules are the same as the previous section with the 
following additions 

(3.5) 

On performing the xl ,  x2 etc integrations after substituting the modified configurations 
into the Hamiltonians we obtain 

where the function G is of no universal significance. It will be determined by the 
details of the potentials etc in the origin Hamiltonian. The nonlinearly realised 
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rotations of the kind (2.12) are realised as in (2.13) with the following additional 
change in B(y): 

(3.7) 

Geometrically we have the picture of a field B ( y )  defined on the surface given by the 
interface position, both in the interpretation of the Hamiltonian (3.6) and the non- 
linearly realised rotations (see Wallace 1980). 

It can also be seen that Hen will be invariant under the nonlinearly realised rotations 
whatever the form of the function G. The other features of the He* are consequences 
of the symmetries of the system and hence are of universal significance. 
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